


Knoxville, TN, 37932, US

Certificate of Analysis

Apr 16, 2021 | Exotic Canopy Solutions

1524 La Linda Ln Chico , CA, 95926, US

PRODUCT IMAGE

HEM

Reagent

Dilution

120320.R02 040721.R01 040721.R02

Full spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection (HPLC-UV). (Method: SOP.T.30.050 for sample prep and Shimadzu High Sensitivity Method SOP.T.40.020 for analysis.). *Based on FL action limits.

947B9291.217

200331059

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson Lab Director

State License # n/a ISO Accreditation # 17025:2017

hiting

Signature

04/16/2021

Signed On

Hempress 3 N/A Matrix: Flower

Seed to Sale #N/A Batch Date :03/01/21 Batch#: 111

Ordered : 04/01/21 sampled : 04/01/21

TESTED

Page 1 of 4

Sample:KN10409005-001

Harvest/Lot ID: Hempress3OR

Sample Size Received: 10 gram Total Weight/Volume: N/A Retail Product Size: 3.5 gram

Completed: 04/16/21 Expires: 04/16/22 Sampling Method: SOP Client Method

10427 Cogdill Road, Suite 500 Knoxville, TN, 37932, US Kaycha Labs

Hempress 3 N/A Matrix : Flower

TESTED

Certificate of Analysis

Exotic Canopy Solutions

1524 La Linda Ln Chico , CA, 95926, US Telephone: 5302280969 Email: Beth@exoticcanopysolutions.com Sample : KN10409005-001Harvest/LOT ID: Hempress3ORBatch# : 111SampleSampled : 04/01/21Total WOrdered : 04/01/21Comple

Sample Size Received : 10 gram Total Weight/Volume : N/A Completed : 04/16/21 Expires: 04/16/22 Sample Method : SOP Client Method

Page 2 of 4

TESTED

0

Terpenes

ND ND ND 0.298 0.803 0.535 ND < 0.2 ND ND ND ND 2.625 < 0.2 ND ND 0.656 2.289 ND 4.098	ND ND ND 0.029 0.080 0.053 ND < 0.020 ND ND ND ND ND ND ND ND ND 0.262 < 0.020 ND 0.262 < 0.020 ND 0.065 0.228		Analyzed by 138 C Analysis Method -:).77899g C	ND ND ND ND 3.727	ND ND ND ND 0.372	TESTEE
ND ND 0.298 0.803 0.535 ND < 0.2 ND ND ND ND ND 2.625 < 0.2 ND ND 0.656 2.289 ND	ND ND 0.029 0.080 0.053 ND < 0.020 ND ND ND ND ND ND ND 0.262 < 0.020 ND ND 0.262		FENCHYL ALCOHOL HEXAHYDROTHYMOL EUCALYPTOL ISOBORNEOL FARNESENE Ter Analyzed by 10 138 00 Analysis Method -5	0.007 0.007 0.007 0.007 0.007 0.007	< 0.2 ND ND 3.727	< 0.020 ND ND 0.372	TESTEE
ND 0.298 0.803 0.535 ND < 0.2 ND ND ND ND 2.625 < 0.2 ND ND 0.656 2.289 ND	ND 0.029 0.080 0.053 ND < 0.020 ND ND ND ND ND ND 0.262 < 0.020 ND ND 0.265		HEXAHYDROTHYMOL EUCALYPTOL ISOBORNEOL FARNESENE Ter Analyzed by 10 138 00 Analysis Method -5	0.007 0.007 0.007 0.007 0.007	ND ND 3.727	ND ND 0.372	TESTEL
0.298 0.803 0.535 ND < 0.2 ND ND ND ND ND 2.625 < 0.2 ND D 0.656 2.289 ND	0.029 0.080 0.053 ND < 0.020 ND ND ND ND ND 0.262 < 0.020 ND ND 0.265		EUCALYPTOL ISOBORNEOL FARNESENE Ter Analyzed by 138 0 Analysis Method -5	0.007 0.007 0.007 0.007 Veight L .77899g	ND ND 3.727	ND ND 0.372	TESTEL
0.803 0.535 ND < 0.2 ND ND ND ND 2.625 < 0.2 ND 0.656 2.289 ND	0.080 0.053 ND < 0.020 ND ND ND ND ND 0.262 < 0.020 ND ND 0.065		ISOBORNEOL FARNESENE Ter Analyzed by 138 00 Analysis Method -3	0.007 0.007 CPENES Weight I .77899g	ND 3.727	ND 0.372	TESTEI
0.535 ND < 0.2 ND ND ND ND 2.625 < 0.2 ND ND 0.656 2.289 ND	0.053 ND < 0.020 ND ND ND ND ND 0.262 < 0.020 ND ND 0.065		Analyzed by Manalysis Method -3	0.007 CPENES Weight 1.77899g	3.727	0.372	TESTER
ND < 0.2 ND ND ND ND 2.625 < 0.2 ND ND 0.656 2.289 ND	ND < 0.020 ND ND ND ND 0.262 < 0.020 ND ND 0.065		Analyzed by No 138 00 Analysis Method -3	rpenes Weight I ^{1.77899g} C	Extraction		TESTED
ND < 0.2 ND ND ND ND 2.625 < 0.2 ND ND 0.656 2.289 ND	ND < 0.020 ND ND ND ND 0.262 < 0.020 ND ND 0.065		Analyzed by 138 C Analysis Method -:	Neight I 0.77899g C		n date	TESTED
< 0.2 ND ND ND ND 2.625 < 0.2 ND ND 0.656 2.289 ND	< 0.020 ND ND ND ND 0.262 < 0.020 ND ND 0.065		Analyzed by 138 C Analysis Method -:	Neight I 0.77899g C		n date	TESTED
ND ND ND ND 2.625 < 0.2 ND ND 0.656 2.289 ND	ND ND ND ND 0.262 < 0.020 ND ND 0.065		Analyzed by 138 C Analysis Method -:	Neight I 0.77899g C		n date	TESTED
ND ND ND 2.625 < 0.2 ND ND 0.656 2.289 ND	ND ND ND 0.262 < 0.020 ND ND 0.065		Analyzed by 138 C Analysis Method -:	Neight I 0.77899g C		n date	TESTEE
ND ND ND 2.625 < 0.2 ND ND 0.656 2.289 ND	ND ND ND 0.262 < 0.020 ND ND 0.065		Analyzed by 138 C Analysis Method -:	Neight I 0.77899g C		n date	TESTEL
ND ND 2.625 < 0.2 ND ND 0.656 2.289 ND	ND ND 0.262 < 0.020 ND ND 0.065		138 0 Analysis Method -).77899g C		n date	
ND ND 2.625 < 0.2 ND ND 0.656 2.289 ND	ND ND 0.262 < 0.020 ND ND 0.065		138 0 Analysis Method -).77899g C		n date	XR
ND 2.625 ND ND 0.656 2.289 ND	ND 0.262 < 0.020 ND ND 0.065		138 0 Analysis Method -).77899g C		ı date	
2.625 < 0.2 ND 0.656 2.289 ND	0.262 < 0.020 ND ND 0.065		138 0 Analysis Method -).77899g C		1 date	
2.625 < 0.2 ND 0.656 2.289 ND	0.262 < 0.020 ND ND 0.065		138 0 Analysis Method -).77899g C		ι αατe	The state of the s
ND ND 0.656 2.289 ND	ND ND 0.065		Analysis Method -		4/13/21 11:04		Extracted By
ND ND 0.656 2.289 ND	ND ND 0.065					1:15	138
ND 0.656 2.289 ND	ND 0.065						
0.656 2.289 ND	0.065						
2.289 ND			Analytical Batch -			lewed On	- 04/14/21 13:26:1
ND	0.228		Instrument Used :				
ND			Running On : 04/1	3/21 16:49:2	28		
	ND		Batch Date : 04/13	3/21 11:30:1	5		
	0.409		-+		<u> </u>		
			Reagent	Dilution	Consum	ıs. ID	
0.691	0.069		liougent				
ND	ND		102920.01	8	P7364369		
ND	ND		090420.01		P7361234		
ND	ND				7303642		
0.202	0.020		$X \setminus I$		947B9291.2	217	
ND	ND						
ND	ND						
			(Gas Chromatograph	ny – Mass Spe	ctrometer)	which can s	screen 38 terpenes
70			17 17	X/		/ \	
77(ND 0.777 ND	0.777 0.077 ND ND	0.777 0.077 ND ND	0.777 0.077 ND ND Terpenoid profile scr (Gas Chromatograph using Method SOP.T. Pending	0.777 0.077 ND ND Terpenoid profile screening is per (Gas Chromatography – Mass Spe using Method SOP.T.40.090 Terper Pending	0.777 0.077 ND ND Terpenoid profile screening is performed usi (Gas Chromatography – Mass Spectrometer) using Method SOP.T.40.090 Terpenoid Analy Pending	ND ND VJF-09-0003 280075293 ND ND Correction of the screening is performed using GC-MS w (Gas Chromatography – Mass Spectrometer) which can susing Method SOP.T.40.090 Terpenoid Analysis Via GC-M Pending

confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson Lab Director

State License # n/a ISO Accreditation # 17025:2017 Sulinguan

Signature

04/16/2021

Signed On

10427 Cogdill Road, Suite 500 Knoxville, TN, 37932, US Kaycha Labs

Hempress 3 N/A Matrix : Flower

TESTED

Certificate of Analysis

Exotic Canopy Solutions

1524 La Linda Ln Chico , CA, 95926, US Telephone: 5302280969 Email: Beth@exoticcanopysolutions.com Sample : KN10409005-001Harvest/LOT ID: Hempress3ORBatch# : 111SampleSampled : 04/01/21Total WOrdered : 04/01/21Completer

Sample Size Received : 10 gram Total Weight/Volume : N/A Completed : 04/16/21 Expires: 04/16/22 Sample Method : SOP Client Method

Page 3 of 4

PASSED

ц Ю

Pesticides

Pesticides	LOD	Units	Action Level	Result	
ABAMECTIN B1A	0.01	ppm	0.3	ND	
ACEPHATE	0.01	ppm	3	ND	
ACEQUINOCYL	0.01	ppm	2	ND	
ACETAMIPRID	0.01	ppm	3	ND	
ALDICARB	0.01	ppm	0.1	ND	
AZOXYSTROBIN	0.01	ppm	3	ND	
BIFENAZATE	0.01	ppm	3	ND	
BIFENTHRIN	0.01	ppm	0.5	ND	
BOSCALID	0.01	ppm	3	ND	
CARBARYL	0.01	ppm	0.5	ND	
CARBOFURAN	0.01	ppm	0.1	ND	
CHLORANTRANILIPROLE	0.01	ppm	3	ND	
CHLORMEQUAT CHLORIDE	0.01	ppm	3	ND	
CHLORPYRIFOS	0.01	ppm	0.1	ND	
CLOFENTEZINE	0.01	ppm	0.5	ND	
COUMAPHOS	0.01	ppm	0.1	ND	
CYPERMETHRIN	0.01	ppm	1	ND	
DAMINOZIDE	0.01	ppm	0.1	ND	
DIAZANON	0.01	ppm	0.2	ND	
DICHLORVOS	0.01	ppm	0.1	ND	
DIMETHOATE	0.01	ppm	0.1	ND	
DIMETHOMORPH	0.01	ppm	3	ND	
ETHOPROPHOS	0.01	ppm	0.1	ND	
ETOFENPROX	0.01	ppm	0.1	ND	
ETOXAZOLE	0.01	ppm	1.5	ND	
FENHEXAMID	0.01	ppm	3	ND	
FENOXYCARB	0.01	ppm	0.1	ND	
FENPYROXIMATE	0.01	ppm	2	ND	
FIPRONIL	0.01	ppm	0.1	ND	
FLONICAMID	0.01	ppm	2	ND	
FLUDIOXONIL	0.01	ppm	3	ND	
HEXYTHIAZOX	0.01	ppm	2	ND	
IMAZALIL	0.01	ppm	0.1	ND	
MIDACLOPRID	0.01	ppm	3	ND	
KRESOXIM-METHYL	0.01	ppm	1	ND	
MALATHION	0.01	ppm	2	ND	
METALAXYL	0.01	ppm	3	ND	
METHIOCARB	0.01	ppm	0.1	ND	
METHOMYL	0.01	ppm	0.1	ND	
MEVINPHOS	0.01	ppm	0.1	ND	
MYCLOBUTANIL	0.01	ppm	3	ND	
NALED	0.01	ppm	0.5	ND	
OXAMYL	0.01	ppm	0.5	ND	
PACLOBUTRAZOL	0.01	ppm	0.5	ND	
PERMETHRINS	0.01		0.1	ND	
	0.01	ppm	1	ND	

Pesticides	LOD	Units	Action Level	Result
PIPERONYL BUTOXIDE	0.01	ppm	3	ND
PRALLETHRIN	0.01	ppm	0.4	ND
PROPICONAZOLE	0.01	ppm	1	ND
PROPOXUR	0.01	ppm	0.1	ND
PYRETHRINS	0.01	ppm	1	ND
PYRIDABEN	0.01	ppm	3	ND
SPINETORAM	0.01	ppm	3	ND
SPIROMESIFEN	0.01	ppm	3	ND
SPIROTETRAMAT	0.01	ppm	3	ND
SPIROXAMINE	0.01	ppm	0.1	ND
TEBUCONAZOLE	0.01	ppm	1	ND
THIACLOPRID	0.01	ppm	0.1	ND
THIAMETHOXAM	0.01	ppm	1	ND
TOTAL SPINOSAD	0.01	ppm	3	ND
TRIFLOXYSTROBIN	0.01	ppm	3	ND
문 ^북 Pesticio	des			PASSED
Analyzed by 143	Weight 0.5061g	Extraction date 04/09/21 11:04:10	Extrac 143	ted By
Analysis Method - SOP.T.30.060, SOP.T.40.060 , Analytical Batch - KN000708PES			Reviewed On- 04/09/21 19:45:16	
Instrument Used : E-SHI- Running On : 04/09/21 13			Batch Date : 04/09/21 11:23:2	28
Reagent		Dilution	Consums. ID	N
032321.R03 033121.R44 040521.R27		10	P7364369 00302193	

Pesticide screen is performed using LC-MS which can screen down to below single digit ppb concentrations for regulated Pesticides. Currently we analyze for 57 Pesticides. (Method: SOP.T.30.060 Sample Preparation for Pesticides Analysis via LCMSMS and SOP.T40.060 Procedure for Pesticide Quantification Using LCMS). Analytes ISO pending. *Based on FL action limits. *

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, pbp=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson Lab Director

State License # n/a ISO Accreditation # 17025:2017 Suturgusa

Signature

04/16/2021

Signed On

10427 Cogdill Road, Suite 500 Knoxville, TN, 37932, US

Kaycha Labs

Hempress 3 N/A Matrix : Flower

TESTED

Certificate of Analysis

Microbials

Exotic Canopy Solutions

A

1524 La Linda Ln Chico , CA, 95926, US Telephone: 5302280969 Email: Beth@exoticcanopysolutions.com Sample : KN10409005-001 Harvest/LOT ID: Hempress3OR Batch# : 111 Sampled : 04/01/21 Ordered : 04/01/21

DACCEI

Sample Size Received : 10 gram Total Weight/Volume : N/A Completed : 04/16/21 Expires: 04/16/22 Sample Method : SOP Client Method

Mycotoxins

Л	é	c	Ē	

Page 4 of 4

106	Micro		PASSED	ို္င္ငံ	Mycol	UXIII5		PASSED
Analyte		LOD	Result	Analyte	LOD	Units	Result	Action Level (PPM)
ESCHERICHIA_COLI_	SHIGELLA_SPP		not present in 1 gram.	AFLATOXIN G2	0.002	ppm	ND	0.02
SALMONELLA_SPECI			not present in 1 gram.	AFLATOXIN G1	0.002	ppm	ND	0.02
ASPERGILLUS_FLAV			not present in 1 gram.	AFLATOXIN B2	0.002	ppm	ND	0.02
ASPERGILLUS_FUMIO			not present in 1 gram. not present in 1 gram.	AFLATOXIN B1	0.002	ppm	ND	0.02
ASPERGILLUS TERRI			not present in 1 gram.	OCHRATOXIN A+	0.002	ppm	ND	0.02
			not present in 1 grann	TOTAL MYCOTOXINS		ppm	0.000	
Analysis Method ·	-SOP.T.40.043							
Analytical Batch -	KN000718MIC Ba	atch Date : 04/12/21		Analysis Method -SO				
Instrument Used	: Micro E-HEW-06	9		Analytical Batch -KNO			- 04/12/21 09	9:01:21
Running On: 04/1	L4/21			Instrument Used : E-		toxins		
				Running On : 04/09/2				
Analyzed by	Weight	Extraction date	Extracted By	Batch Date : 04/09/23	1 11:23:47			
142	1.0014g	NA	NA	Analysis of the	Malak	F		Future at a 1 Put
				_ Analyzed by	Weight	Extraction		Extracted By
		rial Identification via Polymerase C lem Polymerase Chain Reaction (P	Chain Reaction (PCR) method CR) as a crude lysate which avoids	143	0.5061g	04/09/21 01	:04:56	143
purification. (Method S	OP.T.40.043) If a path ergillus niger, or Aspe	nogenic Escherichia Coli, Salmonel rgillus terreus is detected in 1g of	la, Aspergillus fumigatus,					Method: SOP.T.30.060 for antification Using LCMS. LOQ 1.0

محو

Aspergillus flavus, Aspergillus niger, or Aspergillus terreus is detected in 1g of a sample, the sample fails the microbiological-impurity testing

Hg	Heavy	^y Meta	PASSED		
Reagent 040521.R20 040521.R03 040521.R04		Dilution 50	Consur 7285/003 20101506	0023	
Metal	LOD	Unit	Result	Action Level (PPM)	
ARSENIC-AS	0.02	ppm	ND	1.5	
CADMIUM-CD	0.02	ppm	0.191	0.5	
MERCURY-HG	0.02	ppm	ND	3	
LEAD-PB	0.02	ppm	0.084	0.5	
Analyzed by	Weight	Extract	ion date	Extracted By	
12	0.2518g	NA		NA	

Subject replacement of the second se

Analysis Method -SOP.T.40.050, SOP.T.30.052

Analytical Batch -KN000737HEA | Reviewed On - 04/14/21 17:48:45

Instrument Used : Metals ICP/MS

Running On : Batch Date : 04/14/21 14:01:48

Heavy Metals screening is performed using ICP-MS (Inductively Coupled Plasma – Mass Spectrometer) which can screen down to below single digit ppb concentrations for regulated heavy metals using Method SOP.T.30.052 Sample Preparation for Heavy Metals Analysis via ICP-MS and SOP.T.40.050 Heavy Metals Analysis via ICP-MS. Analytes ISO Pending. *Based on FL action limits.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RDD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310. This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is

Sue Ferguson Lab Director State License # n/a

ISO Accreditation #

17025:2017

Suitira

04/16/2021

Signature

Signed On